Reduced brain tissue oxygen in traumatic brain injury: are most commonly used interventions successful?
نویسندگان
چکیده
BACKGROUND Brain tissue oxygenation (PbtO2)-guided management facilitates treatment of reduced PbtO2 episodes potentially conferring survival and outcome advantages in severe traumatic brain injury (TBI). To date, the nature and effectiveness of commonly used interventions in correcting compromised PbtO2 in TBI remains unclear. We sought to identify the most common interventions used in episodes of compromised PbtO2 and to analyze which were effective. METHODS A retrospective 7-year review of consecutive severe TBI patients with a PbtO2 monitor was conducted in a Level I trauma center's intensive care unit or neurosurgical registry. Episodes of compromised PbtO2 (defined as <20 mm Hg for 0.25-4 hours) were identified, and clinical interventions conducted during these episodes were analyzed. Response to treatment was gauged on how rapidly (ΔT) PbtO2 normalized (>20 mm Hg) and how great the PbtO2 increase was (ΔPbtO2). Intracranial pressure (ΔICP) and cerebral perfusion pressure (ΔCPP) also were examined for these episodes. RESULTS Six hundred twenty-five episodes of reduced PbtO2 were identified in 92 patients. Patient characteristics were: age 41.2 years, 77.2% men, and Injury Severity Score and head or neck Abbreviated Injury Scale score of 34.0 ± 9.2 and 4.9 ± 0.4, respectively. Five interventions: narcotics or sedation, pressors, repositioning, FIO2/PEEP increases, and combined sedation or narcotics + pressors were the most commonly used strategies. Increasing the number of interventions resulted in worsening the time to PbtO2 correction. Triple combinations resulted in the lowest ΔICP and dual combinations in the highest ΔCPP (p < 0.05). CONCLUSION Clinicians use a limited number of interventions when correcting compromised PbtO2. Using strategies employing many interventions administered closely together may be less effective in correcting PbO2, ICP, and CPP deficits. Some PbtO2 deficits may be self-limited.
منابع مشابه
P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury
Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...
متن کاملEffect of Mild Brain Traumatic Injury on Intelligence and memory Function in Motorcycle Riders
Introduction: The most common causes of traumatic brain injury are vehicle crashes, including motorcycles, which lead to long-term disabilities. The purpose of this study was to investigate the effect of mild brain trauma on intelligence and memory function in motorcycle riders suffering from mild tumor injury. Materials & Methods: In this prospective cohort study, intelligence and memory fu...
متن کاملP143: The Neuroprotective Effect of Chloroquine in Animal Model of Traumatic Brain Injury
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality in young adults and children, and is a leading public health problem worldwide. In TBI, neurological impairment is caused by immediate brain tissue disruption (primary injury) and post‑injury cellular and molecular events (secondary injury) that exacerbate the primary neurological insult. However, the destructi...
متن کاملTherapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury
Objective(s): Cognitive defects such as learning and memory impairment are amongst the most repetitious sequelae after sever and moderate traumatic brain injury (TBI). It was suggested that ellagic acid (EA), an innate phenol product, display neuroprotective properties against oxidative and inflammatory damages after brain injury. The object of the current study was therapeutic properties of EA...
متن کاملMelatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury
Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of trauma
دوره 70 3 شماره
صفحات -
تاریخ انتشار 2011